Stress-induced phase transitions in nanoscale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cu</mml:mi><mml:mi>In</mml:mi><mml:msub><mml:mi mathvariant="normal">P</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>

نویسندگان

چکیده

Using Landau-Ginsburg-Devonshire approach and available experimental results we reconstruct the thermodynamic potential of layered ferroelectric CuInP$_2$S$_6$ (CIPS), which is expected to be applicable a wide range temperatures applied pressures. The analysis temperature dependences dielectric permittivity lattice constants for different pressures unexpectedly reveals critically important role nonlinear electrostriction in this material. With included calculated pressure phase diagrams spontaneous polarization bulk CIPS. coefficients reconstructed four-well potential, study strain-induced transitions thin epitaxial CIPS films, as well stress-induced nanoparticles, shape varies from prolate needles oblate disks. We reveal strong influence mismatch strain, elastic stress anisotropy on polar properties nanoscale Also, derived analytical expressions, allow control properties. Hence obtained can particular interest strain-engineering nanoferroelectrics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noise-induced transitions vs. noise-induced phase transitions

I will briefly review the field of noise-induced phase transitions, emphasizing the main differences with the phase-induced transitions and showing that they appear in different systems. I will show that a noise-induced transition can disappear after a suitable change of variables and I will also discuss the breaking of ergodicity and symmetry breaking that occur in noise-induced phase transiti...

متن کامل

Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals.

The photothermal heterodyne imaging technique enables studies of individual weakly absorbing nano-objects in various environments. It uses a photoinduced change in the refractive index of the environment. Taking advantage of the dramatic index of refraction change occurring around a thermotropic liquid-crystalline phase transition, we demonstrate a 40-fold signal-to-noise ratio enhancement for ...

متن کامل

Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals

The photothermal heterodyne imaging technique enabled studies of individual weakly absorbing nano-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking advantage of the dramatic index of refraction change occurring around a thermotropic liquid crystalline phase transition, we demonstrate a 40-fold signal-to-noise ratio enhancement for...

متن کامل

NUMERICAL SIMULATIONS OF THE PHASE TRANSITIONS IN CLUSTERS

We have studied the phase transitions in atomic clusters by molecular dynamics simulation, assuming Lennard-Jones interatomic pair potential. Calculations are performed by DAP parallel computer. The results are analyzed by simulating their orientational distribution plots (dot-plot), and neutron diffraction patterns. It is shown that all the main features of the bulk phase transitions are e...

متن کامل

Graph partitioning induced phase transitions.

We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree k. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if nonoptimal) that partitions the graph into essentially equal sized connected components (clusters), the system undergoes a percolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.104.054102